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Abstract

In some processes such as the Liquid Metal MagnetoHydroDynamic (LMMHD) generator, an inert gas
is blown into an electrically conducting fluid to control the behavior of the liquid metal in a magnetic field.
In the present work, the effects of magnetic field on the deformation and breakup of a bubble in a uniaxial
straining flow of conducting fluid are investigated by using the numerical analysis. Specifically, the steady
bubble shape is first determined as a function of three dimensionless parameters: the Reynolds number (Re),
the Weber number (), and the magnetic interaction parameter (). Then, the critical phenomena such as
bubble breakup are studied based on the concept of existence of steady solutions. Finally, a full unsteady
numerical code is adopted for verification of the critical phenomena in the bubble dynamics. In all com-
putations, as a reference, the far field velocity distribution is assumed to be fixed. From the numerical
results, it is found that the steady bubble deformation increases with the strength of the magnetic field for
small N. When N is increased further with fixed Re and W, the bubble shows distinct deformation char-
acteristics depending on the value of W. If W is larger than a certain threshold value (W), there exists a
critical range of N, N, (W) < N < Nu(W), for which no converged steady-state solution has been obtained.
However, if W < W, the steady bubble deformation increases monotonously with the increase of N and no
such a critical phenomenon has been observed. Unsteady numerical analysis shows that a bubble extends
indefinitely in the critical range of the parameters found by the steady analysis. Based on the numerical
results, the diagram for stability and breakup is prepared for a bubble in a linear flow of conducting fluid
under magnetic field. The diagram is expected to provide a valuable information on the bubble size esti-
mation which is essential in two-phase flow modeling. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

One of the interesting problems in the study of bubbly flows is the estimation of the size and
shape of a bubble under external fields such as an electric or a magnetic field. This problem lies at
the core in various applications. In the case of electric field application (e.g. EHD problem), most
fluids are transparent and it is easy to observe the behavior of a bubble (Jones, 1978; Cho et al.,
1996). Thus, there have been many experimental and theoretical works on the effect of electric
field on the behavior of bubbly flow. However, in the case of magnetic field application (e.g. MHD
problem), most electrically conducting fluids are opaque and it is difficult to observe the behavior
of a bubble in such systems. Due partly to the experimental difficulties, the theoretical works on
this problem have also been retarded. Nonetheless, the bubbly flows play important roles in the
design of energy conversion and material processing systems and they should be analyzed ap-
propriately. In the present paper, therefore, we are concerned with the behavior of a single bubble
in an electrically conducting fluid under the magnetic field as a preliminary step for the researches
in this direction.

The present problem has its relevance to several practically important applications. We can find
number of situations in which two-phase flows of a gas and a conducting liquid play important
roles. Such processes include the Liquid Metal MagnetoHydroDynamic (LMMHD) generator
system. The two-phase fluid in LMMHD consists of a mixture of an electrodynamic fluid (a liquid
metal) and a thermodynamic fluid (a gas such as helium). The thermodynamic fluid expands as it
passes through the divergent channel and carries the electrodynamic fluid along with it.

In the modeling of two-phase flow system, it is of great importance to estimate the average size
of the bubbles in the system. Since the deformation and breakup of a bubble is mainly due to the
rate of strain of the local flow field around the bubble, the dynamics of a bubble in a straining flow
has been studied extensively. However, the analysis thus far has been limited mostly to the cases
without electromagnetic field effects.

For the plain two-phase flow without electromagnetic field effects, most investigators have
assumed the existence of a critical Weber number (/) based upon the dimensional analysis
without any detailed information on the critical value. The first major contribution to the bubble
breakup theory was made by the numerical works of Miksis (1981) and Ryskin and Leal (1984b)
on the finite deformation of a bubble in a uniaxial straining flow. Miksis considered the bubble
breakup in the inviscid case and concluded that no steady solution exists for the Weber number
(W) beyond a maximum critical value, ;. Ryskin and Leal studied steady bubble deformation for
non-zero viscosity cases. Ryskin and Leal used an iterative method to solve the full steady-state
Navier-Stokes equations for a series of finite values of the Reynolds number (Re) with Re = o
case as a limiting value. In their numerical works, they could obtain steady bubble shapes only for
the Weber numbers less than the critical values, beyond which no converged solution could be
obtained. Later, Kang and Leal (1987) used a full time-dependent numerical scheme to study the
problem of unsteady bubble deformation in a uniaxial straining flow at several Reynolds numbers
(including Re = o0). By showing explicitly that a bubble is elongated indefinitely if the Weber
number is larger than the critical value, they verified that the critical values predicted by Ryskin
and Leal are the true critical values for the existence of steady solutions. In addition, the unsteady
analysis on the bubble dynamics revealed many interesting nonlinear dynamical characteristics of
a bubble in straining flows.
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As we have seen above, the bubble dynamics in straining flows have been studied extensively.
However, there has been no systematic analysis on the breakup of a bubble in an electrically
conducting fluid under magnetic field. This fact provides the first motivation of the present work.
When the magnetic field is applied, we need to consider another important dimensionless pa-
rameter in addition to the Reynolds number (Re) and the Weber number (/). That is the
magnetic interaction parameter, denoted by N, which represents the effect of the magnetic field.
Therefore, the objectives of the present work can be summarized as follows. If there exists a
critical Weber number, we want to predict it as a function of the Reynolds number and the
magnetic interaction parameter, i.e. W, = W.(Re,N). In addition, we want to obtain the infor-
mation on bubble shapes at subcritical Weber numbers, i.e. Shape = f(Re, N, W) for W < W,. The
goal of the present work will be achieved by extending previous numerical works on the bubble
dynamics in straining flows, especially the works of Ryskin and Leal (1984b) and Kang and Leal
(1987).

Before going on to the main part of the paper, we need to mention the recent works of Eckert
et al. (2000a,b). They considered the behavior of gas bubbles in a turbulent metal magnetohy-
drodynamic flow. They studied the influence of the magnetic field on the bubble dispersion and
the slip ratio. They used one-dimensional model and compared the computational results with the
experimental results. In their model, the bubble radius is an important parameter and the value
has been assumed for the analysis. Since our work is aimed to provide a valuable information on
the bubble size estimation, the results in this paper are expected to be useful for the researchers
such as Eckert et al.

2. Statement of the problem

We consider deformation of an incompressible gas bubble of volume (4/3)na; in an axisym-
metric straining flow under a uniform magnetic field applied in x-direction as shown in Fig. 1. The
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Fig. 1. A bubble in a linear flow of a conducting fluid under magnetic field.
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density and viscosity of the gas inside the bubble are assumed to be negligible in comparison with
those of the liquid (p; < p,, p;v1 < p,v2). Both the gas and the liquid are assumed to be non-
magnetizable, and thus the magnetic permeability of both phase are almost the same, y; ~ u,.
The density and the viscosity of the external fluid are assumed to be constant. Furthermore, the
surface of the bubble is assumed to be characterized by a uniform surface tension y. We neglect all
the effects of gravity including the hydrostatic pressure variation in the fluid. The dimensional
velocity field far from the bubble is assumed to be given by the uniaxial straining flow, which can
be represented in the Cartesian coordinates by

1 0 0
i.=E-x, E=E|0 -1 0], E>0, (1)
0 0 -!

where E, is the principal strain rate.
The governing equations for the fluid motion are the continuity equation and the equation of
motion:

V.a=0, 2)
ou - 1~ — 1 - -

—+a-vVil=-2vp 24 4+ —

<6Z+u Vu) pr+vV u+p(J><B), (3)

where J is the induced current and B is the magnetic induction. The equation of magnetic field for
a linear, isotropic, and homogeneous material is represented as
B o
ot UG

V2B, (4)
where u is the magnetic permeability and o, is the electrical conductivity.
For the boundary conditions, we have
i—-E-X as X — oo (5)

as the far field condition. At the bubble surface, we have:
o Kinematic condition

1 oF

TE| o (6)
o Normal stress condition

[n-(m-T)[] =7V n. (7)
e Tangential stress condition

It-(m-T)]] =0. (8)
e Magnetic field condition

éln = glm (9)

Hlt :l:lzt. (10)
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In the above, F is the shape function that describes the bubble shape as F(X,7) = 0. [| - ] in the
normal stress condition and the tangential stress condition denotes the difference of the quantity
between the outside and inside phases. In (9) and (10), B = uH and the subscripts n and t denote
the normal and the tangential components. In addition to the above boundary conditions, the
bubble shape must satisfy the constraint of volume conservation V = ¥, = (4/3)na;.
To non-dimensionalize the governing equations and the boundary conditions, we introduce the

characteristic scales:

5 1

le =a9, u.=Epay, p.=pu.,, t.=—, B.=By,

C E()
where aq is the radius of the equivalent spherical bubble, and B, the magnitude of the applied
uniform magnetic field. Then the governing equations for the fluid motion become

V-u=0, (11)
a—“+uVu——-—V-+-iv2u+N(J><B) (12)
ot T TP T ke ’

where Re and N are the Reynolds number and the magnetic interaction parameter defined by
N an(z] N GCBg
Re = . and N = By (13)
The dimensionless magnetic field equation is

OB 1

—— B)=—V’B 14

2 V X (u x B) RemV , (14)

where Re,, is the magnetic Reynolds number defined as Re,, = uo.u.l.. In the present work, we
assume that Re, < 1. For a typical case of a molten metal on the laboratory scale of
poe ~ 1m=72s, u. ~ 107" ms!, and /. ~ 1072 m, we have Re,, ~ 10~ and our assumption is
valid. In this situation the magnetic field equation is simplified to

V’B = 0. (15)

It is assumed that the magnetic permeabilities are the same for both phases. Furthermore, as the
far field condition, we have the uniform magnetic field condition. Therefore, the magnetic field is
simply given by the uniform field

B=e, (16)

everywhere.

3. Preliminary analysis

Before performing the detailed numerical analysis, some preliminary steps are taken for better
understanding of the problem.
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3.1. The Lorentz force

The induced current is given in dimensional form by (Moreau, 1990)

J=0.(E+1ixB). (17)
At steady state, Faraday’s law states
- aB
x E = =0. 18
% (18)

Therefore, the electric field can be represented as E = —V(;S. From V-J =0, we have for the
uniform magnetic field case

Vg =V (ixB) =B a, (19)

where @ = V x i is the vorticity vector.

We now can show that if the applied magnetic field is parallel to the axis of symmetry, the
resulting Lorentz force is also axisymmetric and the whole problem can be an axisymmetric
problem. However, if the applied magnetic field is not parallel to the symmetry axis, the Lorentz
force is not axisymmetric and the axisymmetry assumption may not be used.

When the magnetic field is parallel to the rotation axis, we have B = Bye, while the vorticity is
given by @ = e, for the axisymmetric flow field. Therefore, we have B- @ =0 and V?¢ = 0.
Since the bubble surface is insulating and the induced current should form a closed path, both at
the bubble surface and far away from the bubble we have n - J = 0. Therefore, we have

n~j:0C<—Z—f+n~(ﬁxl§)>:0. (20)

Since for the axisymmetric flow field @ x B = ||ii x B|jes, we have n- (@ x B) = 0. Therefore,

ad)/@n =0 both at the bubble surface and far away from the bubble. Thus ¢ = const and
E = —V¢ should vanish. In this case, the Lorentz force is simplified to

FL = o.( x B) x B = —(ii,e, + ii.e.) B> (21)

and it is axisymmetric. The Lorentz force distribution is shown in Fig. 1.

As mentioned previously, it should be kept in mind that, if the applied magnetic field is not
parallel to the rotation axis, the whole problem may not be axisymmetric any more. In that case, a
full three-dimensional analysis should be performed.

3.2. Effect of magnetic field on the pressure field of undisturbed straining flow

When the magnetic field is in the x-direction, the dimensionless governing equation becomes

d 1
a—“ +u-Vu=—Vp+ o Vu— N, +u.e.). (22)

The far field velocity is given as
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uOC:E-x:(x,—g,—%). (23)

By substituting the above velocity distribution to the governing equation, we have

p=n-be (3@ ()] =

The pressure distributions for the cases of N = 0 and N > 0.5 are shown in Fig. 2, where ¢ is the
radial coordinate of the cylindrical coordinate system and o = (3 + 22)1/ *. As shown in the figure,
the far field pressure distribution must be changed to maintain the same velocity field under the
magnetic field. Since

FL-u= —N(ui +u?) <0, (25)

the fluid loses its energy due to the magnetic field. In order to compensate this loss, the pressure
field must be changed as shown in the figure.

At this point a remark should be made to the far field condition. In this work, we are
concerned with the effect of magnetic field on the bubble behavior of deformation and breakup
under the condition that the far field velocity distribution is fixed. The problem defined in this
way can find its relevance to the macroscopic modeling of real bubbly flows as follows. Of
course, when a bubbly flow is subjected to magnetic field, the mean flow around a bubble may

o g

Fig. 2. The pressure distributions in the uniaxial straining flow in the cases with and without magnetic field.
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be changed due to the action of magnetic field. Nevertheless, in terms of relative velocity, the
mean flow around a bubble can be regarded as a linear flow with a certain rate of strain, which
is a function of the applied magnetic field and other factors. Here we should recognize that it is
determined from the overall macroscopic problem of the bubbly flow. On the other hand,
however, the overall bubbly flow is influenced by the microscopic bubble behavior. Thus the
prediction of bubble behavior based on the microscopic analysis is essential for any successful
macroscopic modeling of bubbly flow. The procedure of the overall modeling of bubbly flow
under magnetic field will be like the following. First, by solving the macroscopic problem, we
determine the flow field under the magnetic field and the distribution of the local rate of strain.
Then for each point, the local rate of strain determined from the macroscopic problem is used
to determine the far field condition for the microscopic analysis. This microscopic analysis of
the bubble behavior under magnetic field produces the information on breakup and deforma-
tion (the present work is for this microscopic part). That information is used for the prediction
of rheological properties of the macroscopic flow. In this way, we can analyze the bubbly flow
by iterating these steps several times.

The analysis of the present study may seem to be in a very limited scope in the sense that the
magnetic field is parallel to the rotation axis of an axisymmetric bubble. In general, the local
linear flow is not necessarily axisymmetric and the magnetic field is not necessarily parallel to
the rotation axis of a deformed bubble. However, it is emphasized that all these assumptions
have been made to make the problem as simple as possible, while the main ingredient of the
analysis is kept.

4. Numerical scheme

As mentioned before in Section 1, the present work is related to the previous works of Ryskin
and Leal (1984a,b), and Kang and Leal (1987). The former work is about the steady solution of
the bubble shape in a uniaxial straining flow, and the latter is its unsteady version. In the present
work, we include the Lorentz force term to study the effects of magnetic field on the bubble
deformation and breakup. Therefore, we have closely followed the numerical scheme of Kang and
Leal. In the following, the brief summary of the scheme is presented.

In order to follow the bubble deformation, we have used the boundary-fitted curvilinear co-
ordinate system which was originally developed by Ryskin and Leal (1983). One example is shown
in Fig. 3, where the original coordinate variables x and ¢ of the cylindrical coordinate system are
mapped by the relations

x=x(¢&n), o=a(ln). (26)

In the present problem, we have used the symmetries and we have considered only the region of
0<0< (m/2). In the coordinate system, ¢ = 1 corresponds to the bubble surface and £ = 0 to the
points at infinity. The coordinate line # = 0 corresponds to the rotation axis while # = 1 corre-
sponds to the equatorial plane.

The governing equations for the fluid motion (Egs. (11) and (12)) were reformulated in terms of
streamfunction and vorticity as
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n=1

Fig. 3. The orthogonal curvilinear coordinate system around a deformed bubble.
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1 N OF, Oh OF, Oh
S— — Nhe— P h——— F—= 27
Re (‘““)J“h”hé[fafr 12 My Ty | @7
LY = o, (28)
where the operator L? is defined by
1 [0 /f O o/ 1 0
L2 — I | — 29
hghn[aé(aaé>+@n<af©n)]’ >

and A and A, are the scale factors defined by
1/2

1/2
o\’ AN o\’ AN
(& had S — 30
" [(%) +<65>] M [(%) +<6n> ’ (0
and f(&,n) is the distortion factor defined as f = h,/h;.
In (27) and (28), w is the e,-component of the vorticity vector @ =V x u and the stream-
function  is defined so as to satisfy
1 oy 1 oy

__ty 1o 31
T o o T oh: ¢ (3D

F; and F, in (28) are the components of the Lorentz force in ¢- and y-directions and they are given
by

_ I &xj1Toyox 103Yde (32)
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1 0c[1 Oy Ox 1 O Qo
=i i L o0 i 2 o) >
The boundary conditions in terms of @ and  are: at far field
1
w— 0 and l//—>§x0'2 as & — 0, (34)

and at the gas-liquid interface we require

lp—/"(— )hd—/" _ L Oy at =1 (39)
B At A A e o ) -

corresponding to the kinematic condition. In addition, the vorticity at the bubble surface is given
by
2 aug

=————=-2 n) Uy :17
) h,, o Kpu, at ¢ (36)

where k) is the normal curvature of the interface in #-direction. In deriving the above condition,
the vanishing shear stress condition has been used. The normal stress condition is given by

1
= 55 (K01) + K(6)) = 0, (37)
where «(4) is the normal curvature in the ¢-direction, and W is the Weber number defined as
w _ P(Esa)’ag. (38)
Y

In (37), 7 is the total normal stress, which includes both the pressure and viscous stress con-
tributions and it is given by

2 2 |1 Ous u, Oh:

—E; — | — = 1 39
Re P Re|h: ¢ ik, on (39)
where E;; is the component of the rate of strain tensor. Finally, in order to remove the singularity
in Y as & — 0, we define

V= gxd(1 - &), (40)

which is bounded as ¢ — 0.
The governing equations for the grid generation and the flow field can be expressed in the
following standard form after discretization:

, 0w w ow ow
e +QIa§+q2 +g3w+ g4 = 0, (41)

where w stands for a general dependent variable, which may be x, o, w, ¥". In Table 1, g; are
shown for " and w. Except for the coefficients g, all the detailed numerical steps are more or less
the same as those in Kang and Leal (1987). (So any interested readers are recommended to refer to
the paper.) In all computations, 41 x 41 grid system has been used. For unsteady computations,

Tee=—pP+
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Table 1
The coefficients ¢; in Eq. (41)
w qi
v _ Y S
=S5 5
__1of 10
BT oy
93 =0
q4:——<20faxf+15fx _+56xé46_§+10/ V4 )(ja) hsaw
W of f260 Ox 0o
n=sge e reme—rer(5)(3), %/ (&) (3),

lae 10f Go) (& ¥
qz—gaj}a*Rehn"ﬁRd(@?)(5> TR f< )(61‘)

2 2
qp=— £6_0- _ la_o. +R€f7’l,,u—a 1 Re h"un Oo Reﬂzé Re fheny
1 o @é

g 0¢ a O on At
OF, Oh OF; Re fh:h,
=R I L F 1 _h.— S _F h T
s eNf(h ag+ "E hgan “on ) At

as in Kang and Leal, the fully implicit scheme has been adopted to ensure the stability and the
dimensionless step size ranges from O(1072) to O(1071).

5. Results and discussion

We first considered steady-state problems in order to determine the steady bubble shapes as
functions of the Reynolds number (Re), the Weber number (), and the magnetic interaction
parameter (V). Our special attention has been paid to the critical phenomena such as the existence
of the critical Weber number, beyond which no steady-state solution can be found for fixed Re and
N. Then we considered the full unsteady problem to see what the non-existence of steady solution
means.

Before going on to the detailed discussion on the results, let us first take a look at typical values
of dimensionless parameters. In Table 2, typical values of the four dimensionless parameters N,
Re, W, and Re, are shown for a bubble in molten steel. As we can see in the table, Re,, is very
small for all cases and we may neglect the effect as mentioned before.

5.1. The steady-state problem
5.1.1. The effects of uniform magnetic field on the flow field around a spherical bubble

As a preliminary step, we considered the effects of a uniform magnetic field on the flow field
around a spherical bubble. We were interested in the change of the normal stress distribution over
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Table 2
The typical values of the dimensionless parameters for a bubble in molten steel
N Re w Re,,
Ey (s7h) 10 100 10 100 10 100 10 100
ao(m)
1073 10 1 10 10? 4.1 x 107 4.1 %1072 8.8 x 1076 8.8 x 1073
1072 10 1 103 104 4.1 x 107! 4.1 x10 8.8 x 107* 8.8 x 1073

p=126x10"Hm ', v=10m?s!, p=7x100kgm >, y=1.7Nm ', 6.=07x10°Q ' m !, B=1T.

(@ (b)

(c) (d)
Fig. 4. The effect of magnetic field on the vorticity (left contours in each figure) and streamfunction distributions
around a spherical bubble: (a) Re = 5.0, N = 0.0; (b) Re = 50, N = 0.0; (c) Re = 5.0, N = 2.0; (d) Re = 50, N = 2.0.

the bubble surface due to the flow field change. One set of results is shown in Fig. 4, where the
vorticity and the streamfunction distributions are shown. Compared with the vorticity distribu-
tions, the convection effect becomes dominant when the magnetic field is present. This effect is
apparently similar to the velocity increase near the bubble. This behavior may be explained as
follows.

As well known, the uniform static magnetic field acts as a brake for the fluid motion. In the
preliminary analysis section, we have seen that the pressure field must be changed in order to
overcome this braking effect. We have higher pressure near the equatorial plane. The braking force
per unit volume of fluid is proportional to the velocity component that is orthogonal to the imposed
magnetic field (F o u, ). If there is no bubble, the velocity field would be linear and the pressure field
would follow the expression in the preliminary analysis section. This modified pressure field bal-
ances the braking effect to keep the velocity unchanged. However, the existence of a bubble causes a
change. Near the bubble surface, where the flow is mainly directed parallel to the magnetic field
lines, the braking effect diminishes. Thus, the flow is more accelerated near the bubble surface
compared with the no magnetic field case. This may explain the observed numerical results.
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2

Re=5, N=0.0

e —

_
1 [ Re=5,N=2.0 ~~ ~__

N
Re=50, N=0.0
0 [ Re=50, N=2.0 \
T AN

0.0 0.2 0.4 0.6 0.8 0

n

Fig. 5. The distribution of normal stress t;; = —p + (2/Re)E:: at the surface of a spherical bubble (1 =0 corresponds to
the rotation axis and # =1 corresponds to the equatorial plane of the bubble).

In order to predict the effects of magnetic field on the steady bubble shape under the condition

that the far field velocity is unchanged, we plot the normal stress

2
T =P+ Ex

along the spherical bubble surface in Fig. 5. In the figure, # = 0 corresponds to the rotation axis
and n = 1 to the equatorial plane (in the case of a spherical bubble, 6 = (1/2)#). The surface point
tends to be pulled outward if 7 is positive, while pushed inward if negative. Since we need to
consider the constant volume constraint, the above argument should be modified for the relative
values to a certain mean value. When we compare the results for N = 0 and N = 2.0 at Re = 5, we
can see that under the magnetic field the bubble surface is expected to be more pulled outward
near the rotation axis and more pushed inward near the equatorial plane. Consequently, it is
expected to have more elongation of a bubble under the magnetic field. When Re = 50 and N = 0,
the normal stress has maximum value near # = 0.5. This is because of the pressure field that tends
to follow the Bernoulli’s principle as the Reynolds increases. Even for this high Reynolds number
case, we can see that under the magnetic field the bubble is expected to be somewhat elongated in
the rotational axis direction. The effects of magnetic field on the steady shape of a bubble will be
shown shortly in the following section.

Before going on to the detailed discussion, it should be mentioned that, the Reynolds number
and the Weber number are defined differently from those of Ryskin and Leal (1984b), and Kang
and Leal (1987). There is a factor of 2 between theirs and the present paper.

When a magnetic field is applied, the steady-state shapes are determined by the three param-
eters, Re, W, and N. On the other hand, in the case of no magnetic field, the bubble shape is
characterized by the two dimensionless parameters, Re and W. For the bubble deformation in a
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uniaxial straining flow, Ryskin and Leal (1984b) indicated that there exists a critical #,, for
Re = 5, which is a limit point on the branch of steady solutions that begins with the spherical
solution at # = 0. Physically, the limit point seems to correspond to the first appearance of a
waist in the prolate shapes that were obtained by Kang and Leal (1987). The waist in a prolate
bubble means that the deformed bubble shape has negative n-directional curvature near the
equatorial plane, x(17) < 0. This has been believed to be an indicator of bubble breakup in the case
of no magnetic field. Now, we want to see the effect of the magnetic field on the bubble defor-
mation. A special attention will be given to the breakup behavior.

5.1.2. The effects of uniform magnetic field on the steady bubble deformation

The shape of a bubble is determined by the normal stress distribution. Therefore, the general
behavior of bubble deformation in a magnetic field can be predicted by looking at the normal
stress distribution over the spherical bubble surface. As we have seen in Fig. 5, the magnetic field
has an effect of increasing the difference between normal stresses at the pole and the equator
(téel,—0 — Te¢l,—1)- This means that the pole is more pulled out as the magnetic field effect increases.
In order to study the bubble deformation behavior in more detail, the full free boundary problems
have been solved and the steady bubble shapes are obtained as a function of the magnetic in-
teraction parameter (N) for the fixed Reynolds and Weber numbers.

2.6 2.2 D W=0.60

241 Re=5 weoto i | Re=50  wos™~TETT

2.0 . E—

W=0.515 =

ol it ; i

15

2.2

2.0

18 |
1,16

1.4

1.2

1.0 ' i — i ‘

0 3 6 9 12
(c) N

Fig. 6. The steady-state deformation (/,) of a bubble as a function of the magnetic interaction parameter (N):

(a) Re = 5.0; (b) Re = 50; (c) Re = 100.
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The results for the Re = 5 case are shown in Fig. 6(a). In the figure, /, is the measure of de-
formation and defined as the radius along the major axis. As we can see, the bubble deformation
increases as N increases for small N. However, when N is increased further with fixed Re and W,
the bubble shows distinct deformation behavior depending on the value of W. If W is smaller than
a certain threshold value (#},), steady bubble deformation increases monotonously with the in-
crease of N. However, when W is larger than W, there exist a range of N, Ny (W) < N < No(W),
for which no converged steady-state solution has been obtained. As an example, when W = (.35,
the converged steady solution could not be obtained between the points C (N =4.2) and D
(N = 4.86). It is found that such a critical range of N increases as ¥ increases. The non-existence
of the steady solution is believed to be the reason why no converged solution has been obtained
for the range N (W) < N < Nn(W). This fact will be verified by the full unsteady code. In the
figure, the steady bubble shapes are shown for several points on the solution curves of W = 0.35
(N = 1.3 for the point 4; 3.0 for B; 4.2 for C; 4.86 for D; 9 for E; 12 for F). The largely deformed
shapes at D, E, and F have the negative curvature in #-direction. As discussed earlier, if there were
no magnetic field, such steady bubble shapes with «(,) < 0 would not be possible. In that sense,
this is an interesting deformation characteristics in magnetic field. This point will be discussed
later in detail.

Similar deformation behavior has been observed for the cases of Re = 50 and Re = 100. In the
case of Re = 50, the steady bubble shapes for several points on the solution curves of W = (.55 are
shown (N = 1.62 for A4; 3.0 for B; 4.15 for C; 6.2 for D; 9 for E; 12 for F). The steady shapes on the
points of solution curves of W = (.55 are shown also for the Re = 100 case (N = 1.5 for A4; 3.0 for
B; 4.7 for C; 5.6 for D; 9 for E; 11 for F).

The lower critical value of N, is believed to be a tangential bifurcation point. Since the bubble
is deformed more easily as the Weber number increases, for W > I, the bubble reaches a
tangential critical point as shown in the figure. The deformation behavior of a bubble for W > W,
suggests the so-called Whitney pleat in the catastrophe theory (Arnold, 1986). We have tried all
possible measures to obtain the solution curves between the lower and the upper critical points,
but no converged solution could be obtained with the steady code used in the present work. From
the analysis, we obtained one unexpected result. That is the fact that the deformation of bubble
does not necessarily increase with the increase of N for the second solution curves of W > W, (e.g.
W = 0.55 curve with the points D, E, and F). Unfortunately, however, we are not able to find any
suitable explanation to this behavior at this moment.

Now we need to explain the observation of steady bubble shapes with negative #-directional
curvature near equatorial plane. As mentioned before, if there were no magnetic field, the bubble
could not attain the steady bubble shape with «, < 0. If W > W (i.e. if the deforming force is
larger than a certain limit), the bubble would be elongated indefinitely. Consequently, the radius
of bubble on the equatorial plane decreases with the bubble elongation. This means the normal
stress is negative (compared with the average value) near the equatorial plane. However, under the
magnetic field, steady bubble shape with negative n-directional curvature is possible as we have
seen above. In order to have such a steady bubble shape, the relative normal stress near the
equatorial plane should be less negative compared with the case of no magnetic field. Along the
equatorial plane, the incoming flow is orthogonal to the magnetic field and the flow is most de-
celerated by the magnetic damping effect. Therefore, the relative normal stress at the bubble
surface near the equatorial plane becomes less negative (negative normal stress means that the
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Fig. 7. Unsteady deformation characteristics of a bubble with Re = 50, W = 0.55.

3.0 .
Re=50

26 y
(A) (B) (D)
22 ©) .

1.8 .

14 4

1.0 1 1 1 Il

t

Fig. 8. The unsteady bubble deformations at slightly supercritical N (with respect to N;) when Re = 50: (A) W = 0.75,
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N =5.10 (N, = 5.00).
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surface force is inward and the bubble surface is pushed inward). The above mechanism may
explain the interesting steady bubble shape.

5.2. The unsteady-state problem

From the studies on the steady bubble deformation, it has been suggested that if W > I, there
exists a certain critical range of N, N (W) < N < Nu(W), for which no steady solution has been
found. On the other hand, if W < W, it has been found that the steady deformation increases
monotonously as N increases. In the present section, we want to confirm the findings from the
steady analysis by solving the full unsteady problem. For simplicity in the analysis, we choose one
value of the Reynolds number Re = 50.

2.34

L,
2.26 /\
2.22
40.0 40.2 40.4 40.6 40.8 41.0
t

(@

0.46

042}

0.38

0.34

40.0 40.2 40.4 40.6 40.8 41.0

(b)

(©)

Fig. 9. The unsteady bubble deformation when Re = 50, W = 0.52, and N = 5.1: (a) major axis; (b) minor axis;
(c) consecutive unsteady bubble shapes at ¢ = 40.0, ¢ = 40.6, and ¢ = 40.84.
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5.2.1. The existence of critical range, Ny (W) < N < No(W)

From the results of steady analysis shown in Fig. 6, it has been found that for W > W, there
exists a certain critical range of NV in which no converged steady solution could be obtained. We
assume that no converged solution means true non-existence of steady solution in the critical
range. In this section, we want to confirm our assertion by the full unsteady analysis.

To do that we considered the Re = 50 case and performed full unsteady analysis. As the initial
condition, we chose the steady solution at the point C (W = 0.55 and N =4.15). At t =0 we
suddenly increased the N values to 5,9, and 12. N = 5 is in the critical range, but at other N values
steady solutions exist as shown in Fig. 6(b). The results for the unsteady deformation are shown in
Fig. 7. For small ¢z, the bubble is elongated in every case. However, long time behavior is quite
different. As expected, when N =9 and N = 12, the bubble reaches the steady states after some
overshoots. However, the bubble is elongated indefinitely at N = 5 in the critical range. Therefore,
we can see that no converged steady solution in the critical range implies indefinite deformation in
unsteady dynamics.

In order to better understand the meaning of the critical range of N, we have performed further
unsteady computations at slightly supercritical N (with respect to N) values for W = 0.75,
W =0.60, W = 0.55, and W = 0.52 cases when Re = 50. The results are shown in Fig. 8. We begin
with the steady solutions at the lower critical value of N: N, =1.40 for W = 0.75 (curve A),
N¢ =3.15 for W = 0.60 (curve B), N;; =4.15 for W = 0.55 (curve C), and N, = 5.00 for W = 0.52
(curve D). Then at ¢t = 0.0, we suddenly change N to the slightly supercritical values (N = 1.50 for
W =0.75,N = 3.20 for W = 0.60, N = 4.20 for W = 0.55, and N = 5.10 for W = 0.52) and follow
the subsequent deformations of the bubble. Fig. 8 indicates the elongation of a bubble without
limit eventually leading to bubble breakup in unsteady state. To make sure that the deformations
in Fig. 8 lead to eventual breakup, we examine the case of Re = 50 and W = 0.52 (curve D), which
shows relatively slow elongation compared with others. We plot /, and /, in Fig. 9 near ¢ = 40,
where [, is the radius of a bubble at the equatorial plane. From the figures, we can see that /,
drops rapidly and this suggests that the bubble breakup will occur.

The solution of the soap film problem may provide another insight. We may consider two
bubble radii at two different points on the axis. One is /,; at x = 0 which is the minimum radius in
o-direction, and the other is /,» at x = x, which has maximum value (see Fig. 10(a)). The time-
dependent curve of /,;/1,, in Fig. 10(b) shows a steep decrease and it is another indicator of
breakup. The soap film problem is of course different from the bubble breakup problem in various
aspects. However, from the soap film problem, we may get some insight on breakup. In the
problem of a soap film hanged between two rings of unit radius, the soap film is broken up au-
tomatically (Arfken, 1970) if the radius at the center point (x = 0) is smaller than 0.5524.

5.3. Stability diagram

Now, the numerical results from steady and unsteady analyses are summarized. The shape of a
bubble is a function of three dimensionless parameters: the Reynolds number (Re), the Weber
number (), and the magnetic interaction parameter (V). Summarizing the numerical results, the
stability diagram is prepared and shown in Fig. 11. For each Reynolds number, the critical Weber
number for bubble breakup (/) decreases as the magnetic interaction parameter N increases.
However, this decreasing behavior is limited by a threshold value of W and the breakup behavior
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Fig. 10. The ratio of the minimum /, to the maximum /, for a bubble with a waist near the equatorial plane when
Re =50, W =0.52, and N = 5.1.
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Fig. 11. The stability diagram of a bubble as a function of Re, W, and N.
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has been observed only for W > W,. Further increase of N stabilizes the bubble dynamics and 1,
increases with N. Therefore, for fixed Re and W > W,, we have a critical range,
Nei(W) < N < Np(W), for bubble breakup.

In the present study, we have considered the cases of Re < 100. For larger Reynolds numbers,
the bubble behavior is expected to be more or less the same as in the case of Re = 100. When there
is no magnetic field effect, Ryskin and Leal (1984b) obtained W, = 1.35 (in their notation W, =2.7)
for the potential flow case. This fact partly justifies our assertion. For small W < W, the breakup
has not been observed at least in the range of parameters considered in the present study.

With the diagram, the maximum allowable size can be estimated for a bubble in a linear flow
under the uniform magnetic field. For this purpose the following relation may be used:

v

By estimating E, of the flow field near the bubble, we may compute N first with the given p, a,
and B, (see Eq. (13)). Assuming a large Reynolds number, we can read the value of W, from the
diagram (say, the curve for Re = 100). Then, by using the above relation, the maximum bubble
size can be estimated. If the Reynolds number is not so large, a few iterations may be needed.

6. Conclusion

In order to investigate the effects of a uniform magnetic field on the deformation and breakup
of a bubble, numerical analyses using the steady and unsteady codes have been performed. For
simplicity, we have considered only the magnetic field parallel to the rotation axis of the bubble.
From the numerical results, we have reached the following conclusions:

(1) The uniform magnetic field increases the elongation of a bubble in the axial direction if the

same far field velocity distribution is assumed as in the case of no magnetic field.

(i) When the same local rate of strain is assumed near the bubble, the critical Weber number

(W) for the existence of steady shape decreases as N increases (from N = 0) until a certain

threshold value (W) is reached.

(iii) For fixed Re and W < Wy, the bubble elongation increases monotonously as N increases.

However, if W > W, there exists a critical range, N, (W) < N < Ni(W), for which no con-

verged steady solution has been obtained. By using the full unsteady code, we have shown that

the bubble is elongated indefinitely in the critical range of N.

(iv) The numerical results from the present study are summarized in a diagram for the stability

and breakup of a bubble in a magnetic field. The diagram is expected to provide some valuable

information for estimation of the maximum allowable bubble size in the system.
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